Fractional Isoperimetric Noether's Theorem in the Riemann–Liouville Sense
نویسندگان
چکیده
منابع مشابه
Fractional Optimal Control in the Sense of Caputo and the Fractional Noether’s Theorem
The study of fractional variational problems with derivatives in the sense of Caputo is a recent subject, the main results being Agrawal’s necessary optimality conditions of Euler-Lagrange and respective transversality conditions. Using Agrawal’s Euler-Lagrange equation and the Lagrange multiplier technique, we obtain here a Noether-like theorem for fractional optimal control problems in the se...
متن کاملAn Isoperimetric Theorem in Plane Geometry
An isoperimetric theorem in plane geometry Alan Siegel1 COURANT INSTITUTE OF MATHEMATICAL SCIENCES NEW YORK UNIVERSITY New York Abstract Let be a simple polygon. Let the vertices of be mapped, according to a counterclockwise traversal of the boundary, into a strictly increasing sequence of real numbers in . Let a ray be drawn from each vertex so that the angle formed by the ray and a horizontal...
متن کاملA Quantitative Isoperimetric Inequality for Fractional Perimeters
Recently Frank & Seiringer have shown an isoperimetric inequality for nonlocal perimeter functionals arising from Sobolev seminorms of fractional order. This isoperimetric inequality is improved here in a quantitative form.
متن کاملFractional Isoperimetric Inequalities and Subgroup Distortion
Isoperimetric inequalities measure the complexity of the word problem in finitely presented groups by giving a bound on the number of relators that one must apply in order to show that a word w in the given generators represents the identity. Such bounds are given in terms of the length of w, and the function describing the optimal bound is known as the Dehn function of the group. (Modulo a sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Reports on Mathematical Physics
سال: 2013
ISSN: 0034-4877
DOI: 10.1016/s0034-4877(13)60034-8